Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10926425 | Cell Calcium | 2010 | 10 Pages |
Abstract
The importance of intracellular calcium ([Ca2+]i) regulation in the glomerular filtration barrier (GFB) has recently been highlighted by mutations in the cation channel TRPC6, resulting in a renal-specific phenotype. We examined the effects of FFA, a tool that can activate TRPC6, on [Ca2+]i in human conditionally immortalised glomerular endothelial cells (ciGEnC) and human podocytes (ciPod) that form the GFB. Changes in [Ca2+]i stimulated by FFA were measured in Fura 2-AM loaded cells. In GEnC, cell activation by FFA was dependent on external Ca2+, yet in ciPod it was not. Depletion of internal Ca2+ stores with thapsigargin did not affect cell activation by FFA in ciGEnC, but inhibited it in ciPod in a nephrin-dependent manner, demonstrated using nephrin deficient (ND) ciPod in conjunction with nephrin rescue experiments. FFA induced [Ca2+]i store release in ciPod, but not in ciGEnC or ND ciPod. In parallel, there were differences in the localisation of overexpressed TRPC6 between ciGEnC and ciPod. Furthermore, co-transfection of nephrin with TRPC6 in HEK293 cells reduced the FFA-induced increase in [Ca2+]i and nephrin clustering altered TRPC6 distribution. In conclusion, cell activation by FFA in podocytes stimulates the opening of a Ca2+ channel, probably TRPC6, in a nephrin-dependent manner with a different activation profile to GEnC.
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Cell Biology
Authors
Rebecca Rachael Foster, Gavin I. Welsh, Simon C. Satchell, Robin D. Marlow, Mathew D. Wherlock, Debora Pons, Peter W. Mathieson, David O. Bates, Moin A. Saleem,