Article ID Journal Published Year Pages File Type
10926489 Cell Calcium 2007 12 Pages PDF
Abstract
l-type (Cav1.2) voltage-gated calcium channels play an essential role in muscle contraction in the cardiovascular system. Alternative splicing of the pore-forming Cav1.2 subunit provides potent means to enrich the functional diversity of the channels. There are 11 alternatively spliced exons identified in rat Cav1.2 gene and random rearrangements may generate up to hundreds of combinatorial splicing profiles. Due to such complexity, the real combinatorial splicing profiles of Cav1.2 have not been solved. This study investigated whether the 11 alternatively spliced exons are spliced randomly or linked and if linked, how many combinatorial splicing profiles can be arranged in cardiac- and smooth-muscle cells. By examining three full-length cDNA libraries of the Cav1.2 transcripts isolated from rat heart and aorta, our results showed that the arrangements of some of the alternatively spliced exons are tissue-specific and tightly linked, giving rise to only 41 alternative combinatorial profiles, of which 29 have not been reported. Interestingly, the 41 combinatorial profiles were distinctively distributed in the three Cav1.2 libraries and the one named “heart 1-50” contained unexpected splice variants. Significantly, the tissue-specific cardiac- and smooth-muscle combinatorial splicing profiles of Cav1.2 channels demonstrated distinct electrophysiological properties that may help rationalize the differences observed in native currents. The unique sequences in these tissue-specific splice variants may provide the potential targets for drug design and screening.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Cell Biology
Authors
, , , ,