Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10926507 | Cell Calcium | 2007 | 14 Pages |
Abstract
We have used quartz Ca2+-sensitive microelectrodes (CASMs) in large voltage-clamped snail neurones to investigate the inward spread of Ca2+ after a brief depolarisation. Both steady state and [Ca2+]i transients changed with depth of penetration. When the CASM tip was within 20 μm of the far side of the cell the [Ca2+]i transient time to peak was 4.4 ± 0.5 s, rising to 14.7 ± 0.7 s at a distance of 80 μm. We estimate that the Ca2+ transients travelled centripetally at an average speed of 6 μm2 sâ1 and decreased in size by half over a distance of about 45 μm. Cyclopiazonic acid had little effect on the size and time to peak of Ca2+ transients but slowed their recovery significantly. This suggests that the endoplasmic reticulum curtails rather than reinforces the transients. Injecting the calcium buffer BAPTA made the Ca2+ transients more uniform in size and increased their times to peak and rates of recovery near the membrane. We have developed a computational model for the transients, which includes diffusion, uptake and Ca2+ extrusion. Good fits were obtained with a rather large apparent diffusion coefficient of about 90 ± 20 μm2 sâ1.This may assist fast recovery by extrusion.
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Cell Biology
Authors
Roger C. Thomas, Marten Postma,