Article ID Journal Published Year Pages File Type
10926536 Cell Calcium 2005 11 Pages PDF
Abstract
Evidence indicates that a variety of different types of Ca2+ transients (i.e., standing gradients, pulses and propagating waves) may be occurring both simultaneously and sequentially during neural induction in vertebrate embryos. Transients have been observed in the dorsal marginal zone and in the presumptive neural ectoderm, suggesting that they may be generated within two distinct germ layers at separate embryological locations. It has been proposed that the Ca2+ transients might have multiple roles during the period of neural induction, ranging from: activating the expression of early neural genes; contributing to the inhibition of BMP-4 signalling; generating secretion gradients of morphogens; regulating and co-ordinating convergent extension; and establishing and reinforcing dorsoventral axis specification. Both intra- and extracellular stores (either acting separately or in combination) have been shown to generate the neuralizing Ca2+ transients via well-established release mechanisms, and transients have been shown to propagate between connected cells, suggesting an intercellular signalling dimension. Thus, good evidence is accumulating to suggest that Ca2+ might be a key central regulator in the process of neural induction.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Cell Biology
Authors
, , , ,