| Article ID | Journal | Published Year | Pages | File Type | 
|---|---|---|---|---|
| 10926651 | Cell Calcium | 2005 | 6 Pages | 
Abstract
												The plasma membrane Ca2+ pump (PMCA) is a Ca2+-Mg2+-ATPase that expels Ca2+ from cells to help them maintain low concentrations of cytosolic Ca2+ ([Ca2+]i). It contains five putative extracellular domains (PEDs). Earlier we had reported that binding to PED2 leads to PMCA inhibition. Mutagenesis of residues in transmembrane domain 6 leads to loss of PMCA activity. PED3 connects transmembrane domains 5 and 6. PED3 is only five amino acid residues long. By screening a phage display library, we obtained a peptide sequence that binds this target. After examining a number of peptides related to this original sequence, we selected one that inhibits the PMCA pump (caloxin 3A1). Caloxin 3A1 inhibits PMCA but not the sarcoplasmic reticulum Ca2+-pump. Caloxin 3A1 did not inhibit formation of the 140 kDa acylphosphate intermediate from ATP or its degradation. Thus, PEDs play a role in the reaction cycle of PMCA even though sites for binding to the substrates Ca2+ and Mg-ATP2â, and the activator calmodulin are all in the cytosolic domains of PMCA. In endothelial cells exposed to low concentration of a Ca2+-ionophore, caloxin 3A1 caused a further increase in [Ca2+]i proving its ability to inhibit PMCA pump extracellularly. Thus, even though PED3 is the shortest PED, it plays key role in the PMCA function.
											Keywords
												
											Related Topics
												
													Life Sciences
													Biochemistry, Genetics and Molecular Biology
													Cell Biology
												
											Authors
												Jyoti Pande, Kanwaldeep K. Mallhi, Ashok K. Grover, 
											