Article ID Journal Published Year Pages File Type
10926680 Cell Calcium 2005 5 Pages PDF
Abstract
In contrast to rat and human erythrocytes, nucleated erythrocytes from two fish species (Cyprinus carpio and Salmo trutta) underwent almost complete haemolysis in 20 min of EDTA addition. Using Ca2+/Mg2+ EGTA-citrate buffer, we observed that half-maximal haemolysis of fish erythrocytes occurs at [Ca2+]o ∼10 μM independently of extracellular Mg2+ concentration. Attenuation of [Ca2+]o with EGTA also decreased stability of the plasma membrane of vascular smooth muscle cells (VSMC) and HeLa cells, indicated by a three- to five-fold elevation of lactate dehydrogenase release and passive permeability of plasma membrane for Na+. In VSMC, EGTA lowered [Ca2+]i by ∼20%. This effect was absent in VSMC-loaded with the intracellular Ca2+ chelator BAPTA. In contrast to EGTA, BAPTA did not affect haemoglobin release from fish erythrocytes and passive permeability for Na+ in VSMC. Viewed collectively, our data show that in nucleated cells, extracellular Ca2+ plays a crucial role in the maintenance of plasma membrane integrity.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Cell Biology
Authors
, , ,