Article ID Journal Published Year Pages File Type
10929130 Current Opinion in Cell Biology 2012 8 Pages PDF
Abstract
The germline represents a unique cell type that can transmit genetic material to the next generation. During early embryonic development, somatic cells give rise to a small population of cells known as germ cells, which eventually differentiate into mature gametes. Germ cells undergo a process of removing and resetting relevant epigenetic information, mainly by DNA demethylation. This extensive epigenetic reprogramming leads to the conversion of germ cells into immortal cells that can pass on the genome to the next generation. In the absence of germline-specific reprogramming, germ cells would preserve the old, parental epigenetic memory, which would prevent the transfer of heritable information to the offspring. On the contrary, somatic cells cannot reset epigenetic information by preserving the full methylation pattern on imprinting genes. In this review, we focus on the capacity of germ cells and somatic cells (soma) to transfer genetic information to the next generation, and thus revisit the Weismann theory of heredity.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Cell Biology
Authors
, ,