Article ID Journal Published Year Pages File Type
10929185 Current Opinion in Cell Biology 2012 8 Pages PDF
Abstract
Classical cadherins are the principle adhesive proteins at cohesive intercellular junctions, and are essential proteins for morphogenesis and tissue homeostasis. Because subtype-dependent differences in cadherin adhesion are at the heart of cadherin functions, several structural and biophysical approaches have been used to elucidate relationships between cadherin structures, biophysical properties of cadherin bonds, and cadherin-dependent cell functions. Some experimental approaches appeared to provide conflicting views of the cadherin binding mechanism. However, recent structural and biophysical data, as well as computer simulations generated new insights into classical cadherin binding that increasingly reconcile diverse experimental findings. This review summarizes these recent findings, and highlights both the consistencies and remaining challenges needed to generate a comprehensive model of cadherin interactions that is consistent with all available experimental data.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Cell Biology
Authors
, ,