Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10929243 | Current Opinion in Cell Biology | 2013 | 6 Pages |
Abstract
Eukaryotic cells have the ability to sense chemoattractant gradients and to migrate toward the sources of attractants. The chemical gradient-guided cell movement is referred to as chemotaxis. Chemoattractants are detected by members of G-protein-coupled receptors (GPCRs) that link to heterotrimeric G-proteins. The GPCR/G-protein sensing machinery is able to translate external chemoattractants fields into intercellular cues, which direct reorganization of the actin cytoskeleton that drives cell movement. Here, I review our current understanding of the formation of chemoattractant gradients in vivo, the GPCR-mediated gradient sensing, and the sophisticated signaling network that guides the function of the actin cytoskeleton.
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Cell Biology
Authors
Tian Jin,