Article ID Journal Published Year Pages File Type
10930093 Cytokine & Growth Factor Reviews 2013 17 Pages PDF
Abstract
Stem cells are able to generate both cells that differentiate and cells that remain undifferentiated but potentially have the same developmental program. The prolonged duration of the protective immune memory for infectious diseases such as polio, small pox, and measles, suggested that memory T cells may have stem cell properties. Understanding the molecular basis for the life-long persistence of memory T cells may be useful to project targeted therapies for immune deficiencies and infectious diseases and to formulate vaccines. In the last decade evidence from different laboratories shows that memory T cells may share self-renewal pathways with bone marrow hematopoietic stem cells. In stem cells the intrinsic self-renewal activity, which depends on gene expression, is known to be modulated by extrinsic signals from the environment that may be tissue specific. These extrinsic signals for stemness of memory T cells include cytokines such as IL-7 and IL-15 and there are other cytokine signals for maintaining the cytokine signature (TH1, TH2, etc.) of memory T cells. Intrinsic and extrinsic pathways that might be common to bone marrow hematopoietic stem cells and memory T lymphocytes are discussed and related to self-renewal functions.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Cell Biology
Authors
, , , , ,