Article ID Journal Published Year Pages File Type
10933944 Developmental Biology 2005 13 Pages PDF
Abstract
In Xenopus, the biological effects of BMP-3 oppose those of ventralizing BMPs, but the mechanism for this antagonism remains unclear. Here, we demonstrate that BMP-3 is a dorso-anteriorizing factor in Xenopus embryos that interferes with both activin and BMP signaling. BMP-3 acts by binding to ActRIIB, the common type II receptor for these proteins. Once BMP-3 binds to ActRIIB, it cannot be competed off by excess ligand making a receptor complex that is unable to activate R-Smads and transduce signal. Consistent with a model where BMP-3 interferes with activin and BMPs through a shared receptor, we show that overexpression of BMP-3 can only be rescued by co-injection of xActRIIB. Our results identify BMP-3 as a novel antagonist of both activin and BMPs and uncover how some of the diverse developmental processes that are regulated by both activin and BMP signaling can be modulated during embryogenesis.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Cell Biology
Authors
, , , ,