Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10939583 | Fungal Genetics and Biology | 2010 | 11 Pages |
Abstract
ESCRT-III heteropolymers mediate membrane protein cargo sorting into multivesicular endosomes for subsequent vacuolar degradation. We studied the localization of largely uncharacterized Aspergillus nidulans ESCRT-III using its key structural component Vps32 and the 'associated' component DidBDid2. Vps32-GFP localizes to motile early endosomes as reported, but predominates in aggregates often associated with vacuoles due to inability to dissociate from endosomes. DidBDid2 regulating Vps4 (the ATPase disassembling ESCRT-III) is not essential. Consistent with this accessory role, didBÎ is unable to block the MVB sorting of the glutamate transporter AgtA, but increases its steady-state level and mislocalizes a fraction of the permease to the plasma membrane under conditions promoting its vacuolar targeting. didBÎ exacerbates the dominant-negative growth defect resulting from Vps32-GFP over-expression. A proportion of DidB-GFP is detectable in early endosomes colocalizing with RabARab5 and accumulating in nudA1 tips, suggesting that ESCRT-III assembles on endosomes from the early steps of the endocytic pathway.
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Cell Biology
Authors
América Hervás-Aguilar, Olga RodrÃguez-Galán, Antonio Galindo, Juan F. Abenza, Herbert N. Jr., Miguel A. Peñalva,