Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10953849 | Journal of Molecular and Cellular Cardiology | 2011 | 4 Pages |
Abstract
Whether intracellular Ca2+ regulates sinoatrial node cell (SANC) action potential (AP) firing rate on a beat-to-beat basis is controversial. To directly test the hypothesis of beat-to-beat intracellular Ca2+ regulation of the rate and rhythm of SANC we loaded single isolated SANC with a caged Ca2+ buffer, NP-EGTA, and simultaneously recorded membrane potential and intracellular Ca2+. Prior to introduction of the caged Ca2+ buffer, spontaneous local Ca2+ releases (LCRs) during diastolic depolarization were tightly coupled to rhythmic APs (r2Â =Â 0.9). The buffer markedly prolonged the decay time (T50) and moderately reduced the amplitude of the AP-induced Ca2+ transient and partially depleted the SR load, suppressed spontaneous diastolic LCRs and uncoupled them from AP generation, and caused AP firing to become markedly slower and dysrhythmic. When Ca2+ was acutely released from the caged compound by flash photolysis, intracellular Ca2+ dynamics were acutely restored and rhythmic APs resumed immediately at a normal rate. After a few rhythmic cycles, however, these effects of the flash waned as interference with Ca2+ dynamics by the caged buffer was reestablished. Our results directly support the hypothesis that intracellular Ca2+ regulates normal SANC automaticity on a beat-to-beat basis.
Keywords
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Cell Biology
Authors
Yael Yaniv, Victor A. Maltsev, Ariel L. Escobar, Harold A. Spurgeon, Bruce D. Ziman, Michael D. Stern, Edward G. Lakatta,