Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10954148 | Journal of Molecular and Cellular Cardiology | 2010 | 10 Pages |
Abstract
There is clinical evidence to suggest that impaired myocardial glucose uptake contributes to the pathogenesis of hypertrophic, insulin-resistant cardiomyopathy. The goal of this study was to determine whether cardiac deficiency of the insulin-sensitive glucose transporter, GLUT4, has deleterious effect on cardiomyocyte excitation-contraction coupling. Cre-Lox mouse models of cardiac GLUT4 knockdown (KD, 85% reduction) and knockout (KO, > 95% reduction), which exhibit similar systemic hyperinsulinemic and hyperglycemic states, were investigated. The Ca2+ current (ICa) and Na+-Ca2+ exchanger (NCX) fluxes, Na+-H+ exchanger (NHE) activity, and contractile performance of GLUT4-deficient myocytes was examined using whole-cell patch-clamp, epifluorescence, and imaging techniques. GLUT4-KO exhibited significant cardiac enlargement characterized by cardiomyocyte hypertrophy (40% increase in cell area) and fibrosis. GLUT4-KO myocyte contractility was significantly diminished, with reduced mean maximum shortening (5.0 ± 0.4% vs. 6.2 ± 0.6%, 5 Hz). Maximal rates of shortening and relaxation were also reduced (20-25%), and latency was delayed. In GLUT4-KO myocytes, the ICa density was decreased (â 2.80 ± 0.29 vs. â 5.30 ± 0.70 pA/pF), and mean INCX was significantly increased in both outward (by 60%) and inward (by 100%) directions. GLUT4-KO expression levels of SERCA2 and RyR2 were reduced by approximately 50%. NHE-mediated H+ flux in response to NH4Cl acid loading was markedly elevated GLUT4-KO myocytes, associated with doubled expression of NHE1. These findings demonstrate that, independent of systemic endocrinological disturbance, cardiac GLUT4 deficiency per se provides a lesion sufficient to induce profound alterations in cardiomyocyte Ca2+ and pH homeostasis. Our investigation identifies the cardiac GLUT4 as a potential primary molecular therapeutic target in ameliorating the functional deficits associated with insulin-resistant cardiomyopathy.
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Cell Biology
Authors
Andrea A. Domenighetti, Vennetia R. Danes, Claire L. Curl, Jennifer M. Favaloro, Joseph Proietto, Lea M.D. Delbridge,