Article ID Journal Published Year Pages File Type
10954257 Journal of Molecular and Cellular Cardiology 2008 9 Pages PDF
Abstract
Epinephrine, through its action on β-adrenoceptors, may induce endothelium-dependent vascular dilation, and this action is partly mediated by a cytosolic Ca2+ ([Ca2+]i) change in endothelial cells. In the present study, we explored the molecular identity of the channels that mediate epinephrine-induced endothelial Ca2+ influx and subsequent vascular relaxation. Patch clamp recorded an epinephrine- and cAMP-activated cation current in the primary cultured bovine aortic endothelial cells (BAECs) and H5V endothelial cells. L-cis-diltiazem and LY-83583, two selective inhibitors for cyclic nucleotide-gated channels, diminished this cation current. Furthermore, this cation current was greatly reduced by a CNGA2-specific siRNA in H5V cells. With the use of fluorescent Ca2+ dye, it was found that epinephrine and isoprenaline, a β-adrenoceptor agonist, induced endothelial Ca2+ influx in the presence of bradykinin. This Ca2+ influx was inhibited by L-cis-diltiazem and LY-83583, and by a β2-adrenoceptor antagonist ICI-118551. CNGA2-specific siRNA also diminished this Ca2+ influx in H5V cells. Furthermore, L-cis-diltiazem and LY-83583 inhibited the endothelial Ca2+ influx in isolated mouse aortic strips. L-cis-diltiazem also markedly reduced the endothelium-dependent vascular dilation to isoprenaline in isolated mouse aortic segments. In summary, CNG channels, CNGA2 in particular, mediate β-adrenoceptor agonist-induced endothelial Ca2+ influx and subsequent vascular dilation.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Cell Biology
Authors
, , , , , , , , ,