Article ID Journal Published Year Pages File Type
10956625 Molecular and Cellular Neuroscience 2011 12 Pages PDF
Abstract
In this study, we determined if estrogen receptor alpha (ERα) can interact with the full length tropomyosin receptor kinase B (TrkB-TK+), both of which are implicated in schizophrenia pathogenesis. Using neuronal (SHSY5Y) and non-neuronal (CHOK1) cell-lines, we showed that TrkB-TK+ can increase transcription at estrogen response elements (EREs) with and without exogenous estrogen treatment. In the presence of estrogen, TrkB-TK+ further potentiated the effect of estrogen stimulation on ERα-mediated transcription. This synergistic effect of TrkB-TK+ on ERα-mediated transcription was not due to direct effects of TrkB-TK+ in the nucleus, but occurred through cytoplasmic signaling of TrkB-TK+ via the MAPK/ERK pathway to phosphorylate ERα, leading to an induction in ERα-mediated transcription. When we examined the PI3K/AKT pathway, we found that PI3K/AKT activity constitutively inhibited baseline transcription at EREs. Furthermore, we showed that signaling via PI3K/AKT inhibited TrkB-TK+-dependent transcriptional potentiation at EREs. Our findings suggest that TrkB-TK+-linked second messenger signaling pathways can reciprocally regulate ERα-mediated transcription at EREs. Considering that both ERα and TrkB-TK+ expression are reduced in schizophrenia, our findings suggest that dysfunction in TrkB-TK+ signaling may occur upstream of, or in conjunction with a dysfunction in ERα, and that transcriptional regulation by ERα may be decreased by reductions in TrkB-TK+.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Cell Biology
Authors
, , ,