Article ID Journal Published Year Pages File Type
10956731 Molecular and Cellular Neuroscience 2007 12 Pages PDF
Abstract
Elucidating mechanisms that differentiate motor neurons from interneurons are fundamental to understanding CNS development. Here we demonstrate that within the Drosophila NB 7-3/serotonergic lineage, different levels of Zfh-1 are required to specify unique properties of both motor neurons and interneurons. We present evidence that Zfh-1 is induced by Notch signaling and suppressed by the transcription factor Eagle. The antagonistic regulation of zfh-1 by Notch and Eagle results in Zfh-1 being expressed at low levels in the NB 7-3 interneurons and at higher levels in the NB 7-3 motor neurons. Furthermore, we present evidence that the induction of Zfh-1 by Notch occurs independently from canonical Notch signaling. We present a model where the differentiation of cell fates within the NB 7-3 lineage requires both canonical and non-canonical Notch signaling. Our observations on the regulation of Zfh-1 provide a new approach for examining the function of Zfh-1 in motor neurons and larval locomotion.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Cell Biology
Authors
, ,