Article ID Journal Published Year Pages File Type
10956795 Molecular and Cellular Neuroscience 2005 7 Pages PDF
Abstract
The neuron-enriched endosomal protein 21 (NEEP21) has recently been implicated in the regulation of AMPA receptor (AMPAR) trafficking and proposed to participate in the control of synaptic strength. We tested here this possibility at CA3-CA1 synapses in hippocampal slice cultures using antisense-mediated down-regulation of NEEP21 expression or transfection of a fragment of the cytosolic domain of NEEP21. We found that NEEP21 suppression or expression of the dominant-negative fragment reduced spontaneous and evoked AMPAR-mediated synaptic currents without affecting presynaptic properties. The effect specifically resulted from a reduction of currents mediated by AMPA as opposed to NMDA receptors. Blockade of endocytosis, using a peptide interfering with dynamin, revealed a progressive increase of AMPAR responses due to receptor accumulation in control cells, but not following NEEP21 suppression or expression of the fragment. Also, the enhanced receptor cycling induced by bath application of NMDA resulted in a depression that was enhanced following interference with NEEP21 function. Finally, LTP induction, which involves expression of new synaptic receptors, was abolished in NEEP21-depleted cells or cells expressing the dominant-negative fragment. Together, we conclude that NEEP21 contributes to the regulation of synaptic transmission and plasticity in slice cultures by affecting the recycling and targeting of AMPA receptors to the synapse.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Cell Biology
Authors
, , , , , ,