Article ID Journal Published Year Pages File Type
10958475 Neurochemistry International 2005 6 Pages PDF
Abstract
We investigated whether alterations in glutamate metabolising glutamine synthetase activity occur in human epileptic neocortex, as shown previously for human epileptic hippocampus [Eid, T., Thomas, M.J., Spencer, D.D., Rundén-Pran, E., Lai, J.C.K., Malthankar, G.V., Kim, J.H., Danbolt, N.C., Ottersen, O.P., de Lanerolle, N.C., 2004. Loss of glutamine synthetase in the human epileptic hippocampus: possible mechanism for raised extracellular glutamate in mesial temporal lobe epilepsy. Lancet 363, 28-37]. Glutamine synthetase activity was equivalent in both non-epileptic and epileptic human neocortex. Epileptic tissue, however, was characterised by a 37% increase in the density of synaptosomal NMDA receptor sites compared to non-epileptic tissue, as revealed by a radioligand binding assay (Bmax(non-epileptic) 1.45 pmol/mg protein and Bmax(epileptic) 1.99 pmol/mg protein, P < 0.05). Our findings shed some doubts on a role of glutamine synthetase in the pathophysiology of epilepsy in the neocortex. However, the detection of a significantly reduced enzymatic activity in the epileptic amygdala supports the assumption that the enzyme defect is localized to the epileptic mesial temporal lobe of corresponding patients.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Cell Biology
Authors
, , , , ,