Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1095858 | International Journal of Industrial Ergonomics | 2015 | 13 Pages |
•Comprehensive analysis of various equipment configurations during a simulated crash.•Analysis of the injury potential due to bulk/shape of equipment on injury.•Recommended configuration to reduce injury potential during a simulated crash.
Military helicopter pilots are expected to wear a variety of items of body-borne equipment during flight so as to be prepared for any situation that may arise in combat. Helicopter seats are designed to a specified weight range for an occupant with equipment. This paper investigates how distributing the equipment on the body affects injury potential during a helicopter crash. A finite element model representing a helicopter seat with a fully deformable 50th percentile Hybrid III carrying equipment was developed. The model was subjected to a standard military certification crash test. Various equipment configurations were investigated and analysed to determine its influence on the risk of injury. It was found that placing the equipment low on the torso, i.e. near the thighs, not only reduces the likelihood of injury in the lumbar, spinal region but also provides favourable results in neck and head injury risk when compared to other configurations investigated. In contrast, placing equipment high on the torso, i.e. close to the chin, increases the lumbar load and implicitly, the risk of head injury. A statistical analysis is carried out using the Wilcoxon Signed Rank Test to deliver probability of loads experienced within a certain interval. This study recommends an equipment configuration that improves survivability for an occupant seated on a fixed load energy absorbing seat which is subjected to Military Standard 58095A Test 4.