Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10962474 | Vaccine | 2016 | 7 Pages |
Abstract
Salmonella (S.) enterica infections are an important global health problem with more than 20 million individuals suffering from enteric fever annually and more than 200,000 lethal cases per year. Although enteric fever can be treated appropriately with antibiotics, an increasing number of antibiotic resistant Salmonella strains is detected. While two vaccines against typhoid fever are currently on the market, their availability in subtropical endemic areas is limited because these products need to be kept in uninterrupted cold chains. Hence, the development of a thermally stable vaccine that induces mucosal immune responses would greatly improve human health in endemic areas. Here, we have combined the high structural stability of Salmonella typhi outer membrane proteins (porins) with their microencapsulation into poly(lactic-co-glycolic acid) (PLGA) to generate an orally applicable vaccine. Encapsulated porins were protected from acidic degradation and exhibited enhanced immunogenicity following oral administration. In particular, the vaccine elicited strong S. typhi-specific B cell responses in Peyer's patches and mesenteric lymph nodes. In sum, PLGA microencapsulation substantially improved the efficacy of oral vaccination against S. typhi.
Related Topics
Life Sciences
Immunology and Microbiology
Immunology
Authors
Juan Manuel Carreño, Christian Perez-Shibayama, Cristina Gil-Cruz, Andrea Printz, Rodolfo Pastelin, Armando Isibasi, Dominic Chariatte, Yutaka Tanoue, Constantino Lopez-Macias, Bruno Gander, Burkhard Ludewig,