Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10963069 | Vaccine | 2016 | 10 Pages |
Abstract
Sub-unit vaccines are primarily designed to include antigens required to elicit protective immune responses and to be safer than whole-inactivated or live-attenuated vaccines. But their purity and inability to self-adjuvant often result in weaker immunogenicity. Emerging evidence suggests that bio-engineered nanoparticles can be used as immunomodulatory adjuvants. Therefore, in this study we explored the potential of novel Merck-proprietary lipid nanoparticle (LNP) formulations to enhance immune responses to sub-unit viral antigens. Immunization of BALB/c and C57BL/6 mice revealed that LNPs alone or in combination with a synthetic TLR9 agonist, immune-modulatory oligonucleotides, IMO-2125 (IMO), significantly enhanced immune responses to hepatitis B virus surface antigen (HBsAg) and ovalbumin (OVA). LNPs enhanced total B-cell responses to both antigens tested, to levels comparable to known vaccine adjuvants including aluminum based adjuvant, IMO alone and a TLR4 agonist, 3-O-deactytaled monophosphoryl lipid A (MPL). Investigation of the quality of B-cell responses demonstrated that the combination of LNP with IMO agonist elicited a stronger Th1-type response (based on the IgG2a:IgG1 ratio) than levels achieved with IMO alone. Furthermore, the LNP adjuvant significantly enhanced antigen specific cell-mediated immune responses. In ELISPOT assays, depletion of specific subsets of T cells revealed that the LNPs elicited potent antigen-specific CD4+ and CD8+T cell responses. Intracellular FACS analyses revealed that LNP and LNP + IMO formulated antigens led to higher frequency of antigen-specific IFNγ+TNFα+IL-2+, multi-functional CD8+T cell responses, than unadjuvanted vaccine or vaccine with IMO only. Overall, our results demonstrate that lipid nanoparticles can serve as future sub-unit vaccine adjuvants to boost both B-cell and T-cell responses in vivo, and that addition of IMO can be used to manipulate the quality of immune responses.
Related Topics
Life Sciences
Immunology and Microbiology
Immunology
Authors
Gokul Swaminathan, Elizabeth A. Thoryk, Kara S. Cox, Steven Meschino, Sheri A. Dubey, Kalpit A. Vora, Robert Celano, Marian Gindy, Danilo R. Casimiro, Andrew J. Bett,