Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10966241 | Vaccine | 2013 | 7 Pages |
Abstract
Helicobacter pylori neutrophil-activating protein (NAP) is a toll-like receptor 2 (TLR2) agonist and potent immunomodulator inducing Th1-type immune response. Here we present data about characterization of the humoral immune response against NAP-tagged antigens, encoded by attenuated measles virus (MV) vector platform, in MV infection susceptible type I interferon receptor knockout and human CD46 transgenic (Ifnarko-CD46Ge) mice. Immunogenicity of MV expressing a full-length human immunoglobulin lambda light chain (MV-lambda) was compared to that of MV expressing lambda-NAP chimeric protein (MV-lambda-NAP). MV-lambda-NAP immunized Ifnarko-CD46Ge mice developed significantly higher (6-20-fold) anti-lambda ELISA titers as compared to the MV-lambda-immunized control animal group, indicating that covalently-linked NAP co-expression significantly enhanced lambda immunogenicity. In contrast, ELISA titers against MV antigens were not significantly different between the animals vaccinated with MV-lambda or MV-lambda-NAP. NAP-tagged antigen expression did not affect development of protective anti-measles immunity. Both MV-lambda and MV-lambda-NAP-immunized groups showed strong virus neutralization serum titers in plaque reduction microneutralization test. These results demonstrated that MV-encoded lambda-NAP is highly immunogenic as compared to the unmodified full-length lambda chain. Boost of immune response to poor immunogens using live vectors expressing NAP-tagged chimeric antigens is an attractive approach with potential application in immunoprophylaxis of infectious diseases and cancer immunotherapy.
Related Topics
Life Sciences
Immunology and Microbiology
Immunology
Authors
Ianko D. Iankov, Mark J. Federspiel, Evanthia Galanis,