Article ID Journal Published Year Pages File Type
10969360 Vaccine 2011 10 Pages PDF
Abstract
Epstein-Barr virus (EBV) latent membrane protein 2A (LMP2A) is a subdominant antigen expressed in EBV-associated malignancies, such as Hodgkin's diseases (HD) and nasopharyngeal carcinoma. A large number of previous studies have described LMP2A as an ideal target antigen in immunotherapy of EBV-related diseases, while limited successes have been achieved in clinical trials. Mycobacterium tuberculosis heat shock protein 70 (MtHsp70) is known as an effective molecular adjuvant for protein- or epitope-based vaccines. In the present study, we reconstituted two chaperone complexes of MtHsp70 and LMP2A-derived peptides (LMP2A356-364 FLYALALLL and LMP2A426-434 CLGGLLTMV) in vitro. We then investigated LMP2A-specific immune responses induced by reconstituted complexes of MtHsp70 and LMP2A-peptides using both EBV infected healthy donor PBMCs and HLA-A2.1 transgenic mouse models. We found that reconstituted complexes of MtHsp70 and LMP2A-peptides significantly elicit LMP2A-specific IFN-γ-producing cells and rousted cytotoxic T lymphocytes (CTLs) in vitro and in vivo. In addition, LMP2A-specific immune responses induced by the reconstituted complexes of MtHsp70 and LMP2A-peptides mediated potently protective activity as well as therapeutic efficacy against LMP2A-expressed tumor challenge in mouse models. These studies provide new insights for the development of novel LMP2A-based vaccines against EBV-associated malignancies.
Related Topics
Life Sciences Immunology and Microbiology Immunology
Authors
, , , , , , , ,