Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10971564 | Developmental & Comparative Immunology | 2014 | 6 Pages |
Abstract
Anti-lipopolysaccharide factor (ALF) is a small protein with broad-spectrum antimicrobial activities and certain antiviral property. Its putative lipopolysaccharide (LPS) binding domain was deduced to be important for its activities. However, there is still no report revealing how the structure of the LPS-binding domain affects its biological function until now. In the present study, we designed and synthesized a peptide corresponding to the LPS-binding domain of ALF from the Chinese shrimp (designated as FcALF-LBDc) and its structure-modified isoforms in order to analyze the relationship between its structure and antimicrobial activities. Results showed that FcALF-LBDc exhibited apparent antibacterial activities against both Gram-negative bacteria Escherichia coli and Vibrio anguillarum and Gram-positive bacteria Micrococcus luteus and Micrococcus lysodeikticus with MIC ranges of 32-64, 2-4, 1-2, and 32-64 μM, respectively. The disulfide loop and the basic amino acids in the LPS-binding domain (LBD) of ALF played key roles in its antibacterial activities. In addition, FcALF-LBDc could reduce the propagation of white spot syndrome virus (WSSV) in vivo, and its lysine residue is indispensable for its antiviral property. This is the first attempt to testify the effects of the sequence features of the LPS-binding domain on its antimicrobial activities.
Keywords
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Developmental Biology
Authors
Shuyue Guo, Shihao Li, Fuhua Li, Xiaojun Zhang, Jianhai Xiang,