Article ID Journal Published Year Pages File Type
11001154 Nuclear Engineering and Design 2018 17 Pages PDF
Abstract
Axial-flow-induced vibration has been experimentally investigated with clamped-free cantilevered cylindrical rods confined in a tube and subjected to axial water flow directed from the rod free-end towards the clamped end: a simplified configuration relevant for water-cooled nuclear reactor cores. Non-contact optical techniques have been used to simultaneously detect the rods vibration and the flow field around the vibrating rods free-end. The source of excitation is turbulent buffeting at low flow velocity, while a movement induced excitation component is present at large flow velocities. The rods flow-induced vibration consists of a fuzzy period-1 motion: a periodic (period-1) motion with a chaotic component that increases in relative importance as the flow velocity is increased. The experimental data provided here are particularly suited for numerical fluid-structure model development and benchmarking, as they combine a rich fluid-structure multi-physics interaction with a relatively simple configuration and include both the flow field and the mechanical response of the vibrating rods.
Related Topics
Physical Sciences and Engineering Energy Energy Engineering and Power Technology
Authors
, , , , ,