Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
11003485 | Bioresource Technology | 2018 | 32 Pages |
Abstract
For the first time, cellulase was successfully immobilized on a magnetic core-shell metal-organic framework (MOF) material, UIO-66-NH2. The as-prepared immobilized cellulase demonstrated a high protein loading efficiency of 126.2â¯g/g support and a high enzyme activity recovery of 78.4%. Cellulase immobilized on magnetic UIO-66-NH2 exhibited a superior performance in terms of pH stability, thermal stability and catalytic efficiency compared to its free form. Notably, immobilized cellulase could be recycled for up to 5 consecutive runs. Furthermore, compared to free cellulase, immobilized cellulase showed better tolerance to formic acid and vanillin, two typical inhibitors found in lignocellulosic prehydrolysates. In the presence of 5â¯g/L of formic acid and vanillin, immobilized cellulase demonstrated 16.8% and 21.5% higher activity than free enzyme, respectively, and its improvement in hydrolysis yield was 18.7% and 19.6% respectively. This is firstly confirmed that immobilization can alleviate the inhibitory effects of certain pretreatment inhibitors on cellulase.
Keywords
Related Topics
Physical Sciences and Engineering
Chemical Engineering
Process Chemistry and Technology
Authors
Benkun Qi, Jianquan Luo, Yinhua Wan,