Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
11005628 | Food Chemistry | 2019 | 36 Pages |
Abstract
This study follows recent attempts to discover natural xanthine oxidase (XO) inhibitors from foods, focusing herein on under-researched fish proteins. The anti-hyperuricemic function of tuna flesh hydrolysate (TPH) produced using Alcalase 2.4L was confirmed in potassium oxonate-induced hyperuricemic rats. TPH was separated using 80â¯wt% aqueous ethanol. The ethanol-soluble fraction (ESF) abundant in small peptides (<1000â¯Da) afforded the highest XO inhibition. Separation of ESF by Sephadex G-15 and UPLC/MS/MS revealed 13 di-/tri-peptides (12 are newly identified XO inhibitors). Their XO inhibitory activities were assessed using corresponding synthetic peptides via an improved HPLC method. Results indicate that Phe-containing peptides were more potent XO inhibitors than Trp-containing peptides, with Phe-His having the highest XO inhibitory activity (IC50â¯=â¯25.7â¯mM). Molecular docking studies revealed the importance of two hydrogen bonds and one Ï-Ï stacking interaction with Phe-914 in XO for XO-peptide inhibitor binding. Phe-containing di-/tri-peptides could be potent XO inhibitors against hyperuricemia.
Related Topics
Physical Sciences and Engineering
Chemistry
Analytical Chemistry
Authors
Weiwei He, Guowan Su, Dongxiao Sun-Waterhouse, Geoffrey I.N. Waterhouse, Mouming Zhao, Yang Liu,