Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
11006735 | Materials Science and Engineering: C | 2018 | 7 Pages |
Abstract
The development of tumor-specific imaging nanoprobes with the potential to improve the accuracy of cancer diagnosis has become an area of intense research. Aminopeptidase N (CD13) predominantly expresses on the surface of ovarian tumor cells and can be specifically recognized by Asn-Gly-Arg (NGR) peptide. The applicability of CD13 as a target for specific ovarian tumor imaging, however, remains unexploited so far. In this study, Cy5.5-labeled, NGR-conjugated iron oxide nanoparticles (Cy5.5-NGR-Fe3O4 NPs) were prepared as an ovarian tumor specific bimodal imaging nanoprobe. It is demonstrated that the conjugation of NGR targeting moiety leads to a higher cellular uptake toward ES-2 cells, the human ovarian carcinoma cells that highly express CD13. Moreover, magnetic resonance imaging of ovarian tumor xenograft reveals that the Fe3O4-Cy5.5-NGR NPs results in a significant T2* signal reduction in the tumor. Meanwhile, near infrared fluorescence imaging indicates a higher accumulation of Fe3O4-Cy5.5-NGR NPs in the tumor xenograft. Therefore, CD13 could be applied as a novel and efficient target for constructing ovarian tumor specific nanoprobes with improved accuracy for ovarian tumor diagnosis.
Related Topics
Physical Sciences and Engineering
Materials Science
Biomaterials
Authors
Ying Meng, Zixin Zhang, Kang Liu, Ling Ye, Yuting Liang, Wei Gu,