Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
11006743 | Materials Science and Engineering: C | 2018 | 79 Pages |
Abstract
Recent advancements in biopharmaceutical industry have facilitated the development of novel bioactive macromolecular therapeutics. One of the challenges towards the clinical use of these biomacromolecules lies in the selection of appropriate carriers to protect, deliver and release them in vivo to maximize their pharmacological effects. Micro/nanoparticles made from biodegradable poly (d,l-lactic-co-glycolic acid) (PLGA) have been explored as delivery vehicles for therapeutics. Due to their excellent biocompatibility and controllable biodegradability, PLGA micro/nanoparticles could protect macromolecules from instant degradation in vivo while allowing tunable release rate and profile. In this review, recent progress in the design, fabrication/formulation and application of PLGA based micro/nanoparticles for the controlled delivery of biomacromolecules are discussed. Special focuses will be on the novel loading methods and releasing mechanisms of macromolecules as well as the in vivo applications of therapeutic macromolecule-loaded PLGA micro/nanoparticles.
Keywords
Related Topics
Physical Sciences and Engineering
Materials Science
Biomaterials
Authors
Dawei Ding, Qingdi Zhu,