| Article ID | Journal | Published Year | Pages | File Type |
|---|---|---|---|---|
| 11006932 | Solar Energy | 2018 | 8 Pages |
Abstract
The dynamic effects observed in the J-V measurements represent one important hallmark in the behavior of the perovskite solar cells. Proper measurement protocols (MPs) should be employed for the experimental data reproducibility, in particular for a reliable evaluation of the power conversion efficiency (PCE), as well as for a meaningful characterization of the type and magnitude of the hysteresis. We discuss here several MPs by comparing the experimental J-V characteristics with simulated ones using the dynamic electrical model (DEM). Pre-poling conditions and bias scan rate can have a dramatic influence not only on the apparent solar cell performance, but also on the hysteretic phenomena. Under certain measurement conditions, a hysteresis-free behavior with relatively high PCEs may be observed, although the J-V characteristics may be far away from the stationary case. Furthermore, forward-reverse and reverse-forward bias scans show qualitatively different behaviors regarding the type of the hysteresis, normal and inverted, depending on the bias pre-poling. We emphasize here that correlated double-scans, forward-reverse or reverse-forward, where the second scan is conducted in the opposite sweep direction and begins immediately after the first scan is complete, are essential for a correct assessment of the dynamic hysteresis. In this context, we define a hysteresis index which consistently assigns the hysteresis type and magnitude. Our DEM simulations, supported by experimental data, provide further guidance for an efficient and accurate determination of the stationary J-V characteristics, showing that the type and magnitude of the dynamic hysteresis may be affected by unintentional pre-conditioning in typical experiments.
Related Topics
Physical Sciences and Engineering
Energy
Renewable Energy, Sustainability and the Environment
Authors
George Alexandru Nemnes, Cristina Besleaga, Andrei Gabriel Tomulescu, Alexandra Palici, Lucian Pintilie, Andrei Manolescu, Ioana Pintilie,
