Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
11007203 | Applied Mathematical Modelling | 2018 | 16 Pages |
Abstract
A nonlinear surface-stress-dependent nanoscale shell model is developed on the base of the classical shell theory incorporating the surface stress elasticity. Nonlinear free vibrations of circular cylindrical nanoshells conveying fluid are studied in the framework of the proposed model. In order to describe the large-amplitude motion, the von Kármán nonlinear geometrical relations are taken into account. The governing equations are derived by using Hamilton's principle. Then, the method of multiple scales is adopted to perform an approximately analytical analysis on the present problem. Results show that the surface stress can influence the vibration characteristics of fluid-conveying thin-walled nanoshells. This influence becomes more and more considerable with the decrease of the wall thickness of the nanoshells. Furthermore, the fluid speed, the fluid mass density, the initial surface tension and the nanoshell geometry play important roles on the nonlinear vibration characteristics of fluid-conveying nanoshells.
Related Topics
Physical Sciences and Engineering
Engineering
Computational Mechanics
Authors
Wang Yan Qing, Li H.H., Zhang Y.F., Zu Jean W.,