Article ID Journal Published Year Pages File Type
11010148 Annals of Pure and Applied Logic 2018 50 Pages PDF
Abstract
Proof-theoretic method has been successfully used almost from the inception of interpolation properties to provide efficient constructive proofs thereof. Until recently, the method was limited to sequent calculi (and their notational variants), despite the richness of generalizations of sequent structures developed in structural proof theory in the meantime. In this paper, we provide a systematic and uniform account of the recent extension of this proof-theoretic method to hypersequents, nested sequents, and labelled sequents for normal modal logic. The method is presented in terms and notation easily adaptable to other similar formalisms, and interpolant transformations are stated for typical rule types rather than for individual rules.
Related Topics
Physical Sciences and Engineering Mathematics Logic
Authors
,