Article ID Journal Published Year Pages File Type
11010246 Journal of Great Lakes Research 2018 12 Pages PDF
Abstract
Assessing all pertinent environmental variables to categorize a skill level to safely navigate the water environment can be difficult for inexperienced kayakers, especially at a remote site where internet access is limited. A real-time kayaker safety assessment of water environmental conditions at the Mainland Sea Caves of the Apostle Islands National Lakeshore, Lake Superior is achieved. We present a new cyberinfrastructure that provides kayakers with real-time data access and a Safety Index (SI) with consideration of multiple environmental factors to characterize the degree of navigational difficulty for classifying kayaker skill levels. Specifically, radar reflectivity is added to improve forecasts of dangerous conditions caused by convective storms using state-of-the-art weather and wave modeling. Spectral characteristics of surface waves are employed to correlate the occurrences of extreme and freak waves. In addition, unexpectedly dangerous conditions like coastal upwelling and freak wave occurrence due to changing wind directions are considered. A contingency plan is implemented to handle the issue of possibly missing required environmental data. Display of the SI and visualization of other real-time environmental data are communicated by a power-efficient kiosk. Web analytics demonstrates a public interest in real-time water conditions and the need for the on-site kiosk to provide the latest information before kayakers enter the water. The new real-time water environment cyberinfrastructure for kayaker safety in the Apostle Islands, Lake Superior has been successfully operated since 2014.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Earth and Planetary Sciences (General)
Authors
, ,