Article ID Journal Published Year Pages File Type
11012131 International Journal of Refrigeration 2018 29 Pages PDF
Abstract
A primary motivation underlying the research on room-temperature magnetic refrigeration is reaching energy efficiency levels beyond what is achievable with vapor-compression technology. However, the goal of building commercially viable magnetic refrigeration systems with high performance and competitive price has not been achieved yet. One of the obstacles to reach this goal is the inadequate properties of the currently existing magnetocaloric materials. In this article, the needed improvements in the properties of the magnetocaloric materials are investigated. Two existing vapor-compression refrigerators are used as reference for the required performance, and magnetic refrigerators are simulated using a numerical model. Apart from the requirements such as uniformity of transition temperature for each layer, small increment in transition temperature in adjacent layers, and mechanical strength of the materials, the study shows that for the investigated cases materials with adiabatic entropy change 2.35 times larger than the existing materials are needed to outperform vapor-compression systems.
Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, ,