Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
11012199 | Measurement | 2019 | 24 Pages |
Abstract
In order to filter a UAV-based 3D raw point cloud data, in this paper, filtering performance of four different algorithms using open source and commercial software's have been investigated, (1) curvature based (Multiscale Curvature Classification-MCC), (2) surface-based filtering (FUSION), (3) progressive TIN based (LasTool-LasGround module-commercial) and (4) physical simulation processing (Cloth Simulation Filtering-CSF). The applied filtering results were validated with the reference data set classified by operator. Although different filtering methodologies implemented on point clouds, these methods demonstrated similar results to extract ground on distinctive terrain feature such as dense vegetated, flat surface, rough and complex landscapes. The filtering algorithms' results revealed that UAV-generated data suitable for extraction of bare earth surface feature on the different type of a terrain. Accuracy of the filtered point cloud reached the 93% true classification on flat surfaces from CSF filtering method.
Keywords
Related Topics
Physical Sciences and Engineering
Engineering
Control and Systems Engineering
Authors
Mustafa Zeybek, İsmail ÅanlıoÄlu,