Article ID Journal Published Year Pages File Type
1101880 Journal of Voice 2013 6 Pages PDF
Abstract

SummaryObjectivesTraditional excised larynx dissection and setup calls for the removal of all supraglottal structures, eliminating any source-filter interactions that measurably affect the acoustic properties of phonation. We introduce a simplified vocal tract model that can be used in the excised larynx experiments and tested the nonlinear source-filter interactions that are present with the addition of highly coupled, supraglottal structures.MethodsAerodynamic and acoustic data were measured at phonation threshold pressure (PTP) and +25% PTP in 10 excised canine larynges using a modified dissection technique. PTP and phonation threshold flow (PTF) were defined as the pressure and flow at the phonation onset; phonation threshold power (PTW) is the product of these values. Data were recorded for four experimental conditions: PTP without vocal tract; +25% PTP without vocal tract; PTP with vocal tract; and +25% PTP with vocal tract. Differences in PTP, PTF, and PTW were evaluated. For trials conducted at +25% PTP, differences in airflow were evaluated.ResultsPTP (P = 0.009) and PTW (P = 0.002) were significantly reduced with the addition of the novel vocal tract. A reduction in PTF was also present with the vocal tract (P = 0.021), but airflow was not significantly reduced in +25% PTP trials (P = 0.196).ConclusionThe proposed vocal tract can be used with complete larynges when conducting excised larynx experiments. The effects of nonlinear source-filter interaction were observed during trials with the vocal tract, as evidenced by changes in threshold aerodynamic parameters.

Related Topics
Health Sciences Medicine and Dentistry Otorhinolaryngology and Facial Plastic Surgery
Authors
, , , ,