Article ID Journal Published Year Pages File Type
11019905 Journal of Alloys and Compounds 2019 36 Pages PDF
Abstract
In recent years, heteroatom-doped biomass-derived carbon has attracted intensive attention in vast fields due to their inexpensive precursors and abundant resources, especially in oxygen reduction reaction and supercapacitors. This research demonstrates a simple strategy to prepare mulberry leaves-derived nitrogen, sulfur dual-doped ladder-like porous carbon material, which possesses high content of nitrogen (8.17 at %), sulfur (1.97 at %), large surface area (1689 m2 g−1) and porous structure with a mass of micropores and mesopores. With respect to electrode material of supercapacitor, the nitrogen, sulfur dual-doped ladder-like carbon exhibits large specific capacitance of 243.4 F g−1 at 0.1 A g−1 and outstanding durability (94% retention after 5000 cycles at 3 A g−1). Moreover, in comparison to Pt/C catalyst, nitrogen, sulfur dual-doped ladder-like porous carbon presents excellent electrochemical performances of long term stability (90.2% retention after 20000 s) and resistance to methanol crossover for oxygen reduction reaction. This work successfully may provide a new case to take advantage of nature materials to fabricate heteroatom-doped carbon for energy conversion and storage.
Related Topics
Physical Sciences and Engineering Materials Science Metals and Alloys
Authors
, , , , , , , , ,