Article ID Journal Published Year Pages File Type
11024163 Marine Structures 2019 18 Pages PDF
Abstract
One type of submarine composite pipeline structure, with carbon steel-concrete-stainless steel (CCS) double-skin tube (DST), was introduced in this paper. This composite pipeline was expected to make optimal use of the three types of the materials, and provide significant structural and internal corrosion resistance. This study investigated the compressive and flexural behavior of the composite pipeline under internal content pressure and external hydrostatic pressure through finite element analysis (FEA). Finite element models were developed, where non-linear material properties of stainless steel and composite actions between constituent parts were considered. The models were verified through the comparisons between the numerically and experimentally determined results, in terms of load-deformation histories, failure modes and ultimate strength. Structural behaviors of the composite pipeline under pressures were compared with those without content and hydrostatic pressure. Parametric studies were carried out to investigate the effects of the outer carbon steel strength, inner stainless steel strength, concrete strength and hollow ratio on the compressive and flexural behaviors of the composite pipelines subjected to pressures.
Related Topics
Physical Sciences and Engineering Engineering Civil and Structural Engineering
Authors
, ,