Article ID Journal Published Year Pages File Type
11024795 Geoderma 2019 12 Pages PDF
Abstract
A 24 factorial design was used to investigate the most effective data pre-treatment protocol for the cluster analysis of XRPD data from 12 African soils, each analysed once by five different personnel. Sample-independent effects of displacement error, noise and signal intensity variation were pre-treated using peak alignment, binning and scaling, respectively. The sample-dependent effect of strongly diffracting minerals overwhelming the signal of weakly diffracting minerals was pre-treated using a square-root transformation. Without pre-treatment, the 60 XRPD measurements failed to provide informative clusters. Pre-treatment via peak alignment, square-root transformation, and scaling each resulted in significantly improved partitioning of the groups (p < 0.05). Data pre-treatment via binning reduced the computational demands of cluster analysis, but did not significantly affect the partitioning (p > 0.1). Applying all four pre-treatments proved to be the most suitable protocol for both non-hierarchical and hierarchical cluster analysis. Deducing such a protocol is considered a prerequisite to the wider application of cluster analysis in exploring soil property - soil mineralogy relationships in larger datasets.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Earth-Surface Processes
Authors
, , , , , , ,