Article ID Journal Published Year Pages File Type
11026403 Renewable and Sustainable Energy Reviews 2018 20 Pages PDF
Abstract
Organolead trihalide perovskite absorber layers are potential contenders in solar energy harvesting technologies because of their competitive lower fabrication cost, high power conversion efficiency, and ease of processing. The structural, interfacial and morphological properties are the key aspects to determine the stability and photon-to-current conversion efficiency of Perovskite solar cells (PSCs). Most contemporary research has emphasised on enhancing the power conversion efficiency (PCE) of perovskites by changing the fabrication process, solvent engineering, or precursor solution. With changes in these variables, the structure and morphology of perovskites also change, which affects the photon-to-current conversion efficiency and the stability of the PSCs. However, no stockpiled records have aided in conducting corresponding research outcomes on this perspective. In this review, we summarise the effect of fabrication method on the structure and morphology, as well as the PCE and stability of PSCs. This review will help readers decipher the scientific and technological challenges concerning hybrid inorganic-organic PSCs.
Related Topics
Physical Sciences and Engineering Energy Renewable Energy, Sustainability and the Environment
Authors
, , , , , , , , , , ,