Article ID Journal Published Year Pages File Type
11026440 Energy 2018 34 Pages PDF
Abstract
This research focuses on the effects of the asymmetric airfoil profiles on aerodynamic performance and economic evolution of a vertical axis wind turbine (VAWT) at different blade heights, solidities, and tip speed ratios (TSR or λ). The aerodynamic performance of six asymmetric airfoils, S809, S814, RISØ-A1-24, Du 93-W-210, FFA-W3-241, and FX66-S196-V1, was calculated using double multiple-stream tube (DMST) theory and blade element methods for determination of their performance for tip speed ratios from 1 to 12, and solidities of 0.2-0.6, were considered for this study. All calculations focused on the Khaf area (rural zone) in Iran and considered two heights: 10 m and 40 m. To verify the performance of the developed code, results were compared with experimental power coefficient data for NACA0012 airfoil. For FFA-W3-241 airfoil, maximum power coefficient was obtained at solidity of 0.5 and tip-speed ratio of 4. This aerodynamic excellence resulted in 22.4% and 21.9% increase in annual energy production at hub heights (h) of 10 m and 40 m, respectively, while keeping the total investment costs constant. Moreover, the ratio of wind-generated electric power sales to the total investment cost was found to be 4.33 (0.15/0.0346) for 15 years of operation.
Related Topics
Physical Sciences and Engineering Energy Energy (General)
Authors
, , ,