Article ID Journal Published Year Pages File Type
11027434 Food Chemistry 2019 22 Pages PDF
Abstract
This study investigated the relationships among UV-B radiation dose, isoflavone monomers and the oxidative-antioxidant system in germinating soybean. Results showed that the isoflavone monomers content showed a good fit to the quadratic model with UV-B radiation dose, except for aglycones. UV-B decreased phenylalanine content and up-regulated the key enzymes activities in isoflavone biosynthesis. H2O2, electrolyte leakage, malondialdehyde, T22 and M22 were increased, while T23 and M23 decreased. Microscopic analysis showed excess UV-B radiation resulted in the reduced cell volume, irregular cell shape, and increased cell space. The antioxidant enzymes activities were enhanced by UV-B. These results demonstrated that UV-B could trigger the formation of H2O2, resulting in the oxidative stress. Thus, the antioxidant system, including the enzymatic (enhanced the antioxidant enzymes activities) and nonenzymatic (accumulated isoflavones) were activated to minimize oxidative damage. This study provides theoretical basis for enhancing isoflavone monomer accumulation in plant-source foods by UV-B.
Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , , , ,