Article ID Journal Published Year Pages File Type
11027687 Biosensors and Bioelectronics 2018 23 Pages PDF
Abstract
Biosensing and detecting the rare circulating tumor cells (CTCs) in complex blood samples are a great challenge but necessary for cancer metastasis prevention. Here we show a novel highly-sensitive biosensing system for detecting CTCs in whole blood. The system is composed of Her2-coated immunomagnetic beads and an anti-EpCAM aptamer assembled pseudo-DNA nanocatenane (PDN) for dual targeting and separating CTCs, in conjunction with the rolling circle amplification (RCA) and molecular beacon (MB) system for CTCs signal amplification. The Her-2-coated beads separated CTCs from blood after their elution from a magnetic column. The unique PDN, which is a tailor-designed self-assembly of three circular DNAs that are inter-locked with independent and non-interfered templates for periodic RCA process, binds EpCAM-rich CTCs. In the presence of the RCA primer, phi29 DNA polymerase and MB, the system collaboratively generated the amplified fluorescent signals for highly-sensitive detection of CTCs. Through this system, we achieved the limit of detection less than 10 CTCs/mL blood, and quantified the number of CTCs in patient blood, which is proportional to the patient cancer status. Our technique is highly-sensitive, practicable and convenient enough for clinical detection of breast CTCs.
Related Topics
Physical Sciences and Engineering Chemistry Analytical Chemistry
Authors
, , , , , , , , , ,