Article ID Journal Published Year Pages File Type
11029489 Renewable Energy Focus 2018 11 Pages PDF
Abstract
An experimental system was built for this purpose. The simulation model to predict the electrical and thermal performance of a hybrid PV/T collector is offered. The results show a good agreement between the experimental and theoretical results for the exit air temperature and PV cell temperature. There was an increase of (20%) and (44%) in the electrical efficiency and thermal efficiency respectively when the fluid flow rate increase from 0.024 to 0.057 m3/s. Also, the change of exit air temperature and useful heat energy related closely to the variation of solar radiation and reached its ultimate value at midday and then decreased. These results showed that the exit air temperature for the glazed collector is approximately 7% higher than the outlet air temperature in the unglazed collector. The highest value for the daily compound efficiency was 90.48% in the collector that used glass cover, while the higher value for the compound efficiency was 62.16% without glass cover.
Related Topics
Physical Sciences and Engineering Energy Renewable Energy, Sustainability and the Environment
Authors
, ,