Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
11030816 | Journal of Molecular and Cellular Cardiology | 2018 | 28 Pages |
Abstract
Abnormal endocardial cushion formation is a major cause of congenital heart valve disease, which is a common birth defect with significant morbidity and mortality. Although β-catenin and BMP2 are two well-known regulators of endocardial cushion formation, their interaction in this process is largely unknown. Here, we report that deletion of β-catenin in myocardium results in formation of hypoplastic endocardial cushions accompanying a decrease of mesenchymal cell proliferation. Loss of β-catenin reduced Bmp2 expression in myocardium and SMAD signaling in cushion mesenchyme. Exogenous BMP2 recombinant proteins fully rescued the proliferation defect of mesenchymal cells in cultured heart explants from myocardial β-catenin knockout embryos. Using a canonical WNT signaling reporter mouse line, we showed that cushion myocardium exhibited high WNT/β-catenin activities during endocardial cushion growth. Selective disruption of the signaling function of β-catenin resulted in a cushion growth defect similar to that caused by the complete loss of β-catenin. Together, these observations demonstrate that myocardial β-catenin signaling function promotes mesenchymal cell proliferation and endocardial cushion expansion through inducing BMP signaling.
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Cell Biology
Authors
Yidong Wang, Pengfei Lu, Bingruo Wu, Dario F. Riascos-Bernal, Nicholas E.S. Sibinga, Tomas Valenta, Konrad Basler, Bin Zhou,