Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
11031092 | Solar Energy | 2018 | 4 Pages |
Abstract
In this study, various electron and hole transport structures were created in perovskite solar cells to ameliorate the problem of carrier mobility balance. Balanced electron and hole mobilities could reduce carrier recombination probability in the cells to improve their performance. The space-charge-limited current (SCLC) method was used to calculate the electron and hole mobilities of perovskite devices with various electron transport layers (ETLs) and hole transport layers (HTLs). Compared with perovskite devices with [6,6]-phenyl-C-61-butyric acid methyl ester (PC60BM) single ETL and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) single HTL, the current density and power-conversion efficiency of perovskite solar cells with [6,6]-phenyl-C-71-butyric acid methyl ester/pristine fullerenes (PC70BM/C70) dual ETLs and PEDOT:PSS/poly[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-bâ²]dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]-thiophenediyl] (PTB7) dual HTLs increased from 18.22 to 24.11â¯mA/cm2 and 7.07% to 14.11%, respectively. Compared with the carrier mobility balance ratio (μh/μe) of 0.35 of perovskite solar cells with PC60BM single ETL and PEDOT:PSS single HTL, perovskite solar cells with dual ETLs and dual HTLs showed a μh/μe of 0.90, which led to the performance improvement of the cells.
Keywords
Related Topics
Physical Sciences and Engineering
Energy
Renewable Energy, Sustainability and the Environment
Authors
Guan-Syun Chen, Yi-Ching Chen, Ching-Ting Lee, Hsin-Ying Lee,