Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
11031093 | Journal of Physics and Chemistry of Solids | 2019 | 27 Pages |
Abstract
We introduce Cu2O as a hole-transporting material in perovskite solar cells. Device modeling with a configuration of glass/fluorine-doped tin oxide/ZnO/perovskite/Cu2O/carbon was performed by SCAPS, a solar cell capacitance simulator. The simulation results indicate that the device performance is greatly dependent on the defect densities and thickness of the perovskite absorber. An absorber thickness of 500â¯nm was optimum for efficient light absorption. The defect states at the perovskite/ZnO interface had a stronger influence on solar cell performance than those at the Cu2O/perovskite interface; therefore, to further improve photovoltaic performance, we should pay particular attention to the perovskite/ZnO interface. Proper interface modification and passivation to lower defect densities of the interface below 1016â¯cmâ3 was essential. The impact of acceptor density and hole mobility of the hole-transport layer on device performance further confirmed that Cu2O is a suitable hole-transport layer for perovskite solar cells. Finally, to achieve better photovoltaic performance, a back-contact material with a high work function is very necessary.
Related Topics
Physical Sciences and Engineering
Materials Science
Electronic, Optical and Magnetic Materials
Authors
Lingyan Lin, Linqin Jiang, Ping Li, Baodian Fan, Yu Qiu,