Article ID Journal Published Year Pages File Type
11031787 Behavioural Brain Research 2019 13 Pages PDF
Abstract
In an attempt to better represent the aetiology of fetal alcohol spectrum disorder (FASD) and the associated psychological deficits, prenatal-ethanol exposure was followed by maternal separation in a rat model in order to account for the effects of early-life adversities in addition to in utero alcohol exposure. Extracellular signal-regulated kinase 1/2 (ERK1/2) and glycogen synthase kinase 3-β (GSK3β) are converging points for many signalling cascades and have been implicated in models of FASD and models of early-life stress. Therefore, these kinases may also contribute to the behavioural changes observed after the combination of both developmental insults. In this study, ethanol-dams voluntarily consumed a 0.066% saccharin-sweetened 10% ethanol (EtOH) solution for 10 days prior to pregnancy and throughout gestation while control-dams had ad libitumaccess to a 0.066% saccharin (sacc) solution. Whole litters were randomly assigned to undergo maternal separation (MS) for 3 h/day from P2 to P14 while the remaining litters were left undisturbed (nMS). This resulted in 4 experimental groups: control (sacc + nMS), MS (sacc + MS), EtOH (EtOH + nMS) and EtOH + MS. Throughout development, EtOH-rats weighed less than control rats. However, subsequent maternal separation stress caused EtOH + MS-rats to weigh more than EtOH-rats. In adulthood both MS- and EtOH-rats were hyperactive but the combination produced activity levels similar to that of control rats. All treated animals (MS-, EtOH- and EtOH + MS-rats) demonstrated a negative affective state shown by increased number and duration of 22 kHz ultrasonic vocalizations compared to control rats. Prenatal-ethanol exposure increased the P-GSK3β/GSK3β ratio in the prefrontal cortex (PFC) and maternal separation decreased the P-GSK3β/GSK3β ratio in the dorsal hippocampus (DH) of adult rats. However, maternal separation stress decreased the effect of prenatal-ethanol exposure on the P-ERK/ERK ratio in the PFC and DH and reduced prenatal-ethanol-induced hyperactivity. Therefore, indicating a significant interaction between prenatal-ethanol exposure and early-life stress on behaviour and the brain and may implicate P-ERK1/2 signalling in exploratory behaviour.
Related Topics
Life Sciences Neuroscience Behavioral Neuroscience
Authors
, , ,