Article ID Journal Published Year Pages File Type
11033071 Quaternary Geochronology 2018 36 Pages PDF
Abstract
Beryllium-10 (10Be) in quartz represents the most common in situ cosmogenic nuclide used for quantifying Earth-surface processes, primarily due to the prevalence of quartz in the Earth's crust. However many landscapes lack quartz-bearing rocks, thus other nuclide-mineral pairs are required for geochronometric and geomorphic applications. Here we describe the successful isolation and measurement of in situ10Be concentrations in pyroxene from two mafic sample sets: (i) andesite boulders of the Murimotu Formation debris avalanche on Mt. Ruapehu, New Zealand, and (ii) dolerite cobbles deposited in a ∼100 m vertical transect at Mt. Gran by Mackay Glacier, Antarctica. Precise radiocarbon age constraint of the New Zealand site provides further geological constraint of the reference (at sea level and high latitude) 10Be production rate in pyroxene, which we find to be indistinguishable from a previous estimate. Combining our results with previous data yields a reference production rate of 3.2 ± 0.8 at. g−1 yr−1 (n=5; 'Lm' scaling). Application of this rate to the glacial cobbles at Mackay Glacier yields a relatively coherent chronology of ice surface lowering between ∼14 and 6 ka, which is broadly consistent with a well-constrained quartz-based 10Be chronology from nearby nunataks. Improving the viability of in situ10Be for geological applications in mafic domains requires increased analytical precision beyond current levels. This improvement may be best achieved by further modification of the quartz-based methodologies for 10Be purification, in order to better handle the high cationic contaminant loads of ferromagnesian minerals. In addition, further 10Be measurements from suitable mafic sedimentary deposits with independent age control (e.g. existing cosmogenic 3He calibration sites) will help to refine estimates of the reference production rate.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geochemistry and Petrology
Authors
, , , , , ,